À propos de la BD « Le monde sans fin »

En 2021, paraissait une BD « éducative » sur l’énergie : « Le Monde sans fin, miracle énergétique et dérive climatique »  octobre 2021, de Jean-Marc Jancovici (JMJ) et illustré par Christophe Blain. Ce livre a eu un grand succès (plus de 1 000 000 d’exemplaires vendus en mai 2024), mais à notre avis c’est une œuvre magistrale de désinformation pronucléaire et de dénigrement des énergies renouvelables.

Tout n’y est pas à jeter, il est clair qu’il va falloir consommer moins et mieux et économiser l’énergie (c’est la sobriété), et produire proportionnellement plus d’électricité dans le futur. Le tout est donc de savoir comment !

Les arguments utilisés dans Le Monde sans fin, même caricaturaux, se retrouvent dans une version légèrement édulcorée dans les débats actuels sur les choix énergétiques en France et en Belgique. JMJ ne dit pas que des bêtises, mais lorsqu’il aborde la réforme nécessaire du « mix électrique », il devient clair qu’il agit en lobbyiste pronucléaire1 souvent en détournant des chiffres de manière à pénaliser les énergies renouvelables2 et promouvoir le nucléaire, tout en déniant même les dangers de la radioactivité et l’absence de solution pour les déchets nucléaires.

Certains calculs à propos du renouvelable sont basés sur des données déjà obsolètes, ou qui vont très bientôt être remises en cause par le progrès technique, bien plus dynamique en ce domaine que dans l’industrie électronucléaire !

Lire aussi l’intéressante critique faite par Pierre-Guy Thérond, Vice-Président  New Technologies chez EDF EN, ainsi que « Le Corrigé » de Ghislain Dubois et la critique de Stéphane His !

Quelques « oublis », dénis et informations biaisées

  • Les centrales belges ne sont pas aux normes post-Fukushima concernant le risque de chutes d’avions, du moins pour les gros porteurs qui passent au-dessus de Bierset. Un crash d’avion volontaire, ou non pourrait briser l’enceinte d’un réacteur3, ou détruire le futur site de stockage de déchets nucléaires à Tihange.
  • Risque du terrorisme ou d’une prise d’otage à l’intérieur d’une centrale.
  • Le vol de matières très radioactives. Faire une « bombe sale », pour répandre ces matières dans des zones habitées, est à la portée d’un groupe terroriste.
    Pour info, l’ingestion ou l’inhalation d’un milligramme de plutonium 239 est mortelle, un millionième de gramme peut déclencher un cancer, car cet élément peut rester quasiment à vie dans certains organes…
  • Une guerre de haute intensité dans un pays doté de centrales nucléaires : il suffit de suivre ce qui se passe en Ukraine (Zaporijja), et pour rappel en octobre 2020 l’armée de l’Azerbaïdjan a menacé la centrale arménienne de Metzamor d’un tir de missile ; heureusement, le missile a été intercepté avant de toucher sa cible !
  • Une baisse drastique du niveau d’une rivière lors d’une « super sécheresse » qui empêcheraient de refroidir les réacteurs. Tout comme les inondations, les tempêtes, et une hausse du niveau de la mer, rendant par exemple Gravelines inutilisable, voire pire… Le nucléaire est très vulnérable aux dérèglements climatiques.
  • Les réserves d’uranium nous assurent à peu près un siècle de combustible avec le parc actuel, soit un peu plus de 400 réacteurs en fonctionnement. Comme le nucléaire produit 10 % de l’électricité mondiale, et à peu près 4 % de l’énergie primaire consommée sur la planète, ce n’est pas une solution pour agir sur le CO2 au niveau planétaire. Multiplier le parc actuel même par un facteur 5 est irréalisable, et épuiserait les ressources en uranium rapidement.
  • Le temps de mise en œuvre est relativement long. Flamanville est en construction depuis 2007. Les nouveaux projets nucléaires français ne seront pas disponibles avant 2035-2040, alors que l’urgence climatique nous demande une efficacité dans les 10 ans. Et toute nouvelle solution nucléaire industrielle demande 15 à 20 ans pour passer au stade de la production en série.
  • Le coût du nucléaire ne fait qu’augmenter, à la suite, en partie, des règles de sécurité post-Fukushima. En comparaison, les coûts de l’éolien ont baissé de 70 % entre 2009 et 2019, ceux du solaire de 89 % quand ceux du nucléaire augmentaient de 26 %. Un euro investi dans le nucléaire économise donc moins de CO2 que le même euro investi dans les renouvelables et les solutions annexes, par exemple l’investissement du gouvernement Belge dans les système de stockages4.
  • Le problème des déchets n’est absolument pas résolu. Le coût financier et écologique (production de CO2) de l’enfouissement est énorme et bien caché, et sera en grande partie transmis aux générations futures !
  • Le lien historique et encore actuel entre le nucléaire civil et le nucléaire militaire. Notez que les pays les plus acharnés à maintenir leurs centrales électronucléaires sont ceux qui ont l’arme nucléaire, ou qui cherchent à l’obtenir.
  • Seulement 50 morts à Tchernobyl, aucun effet sur la santé des habitants à Fukushima dû à la radioactivité ? Allez demander aux Ukrainiens, Biélorusses et Japonais qui en souffrent encore aujourd’hui. Les sources « officielles » ont été manipulées par les agences censées nous protéger, et l’OMS, dès sa fondation, n’a pas le droit d’émettre un avis sur l’effet de la radioactivité sur la santé sans l’accord de l’AIEA, association pour la promotion de l’énergie nucléaire. L’UNSCEAR n’est pas neutre.

Conclusions

Le nucléaire peut-il nous aider ? Prolonger les réacteurs existants expose à des coûts de réparation, des arrêts imprévus (voir la France) et en construire de nouveaux, c’est la source d’énergie la plus chère…

Il est beaucoup, beaucoup plus efficace, facile, économique et sans risques, d’investir dans un mix d’énergies renouvelables intermittentes et non intermittentes (biomasse, méthanation, méthanisation, hydrogène vert, ammoniac de synthèse…) et dans des capacités de stockage et de maîtrise de la demande.

Un euro investi dans ces solutions alternatives économisera plus de gaz à effet de serre qu’un euro investi dans le nucléaire.

Au niveau mondial, le nucléaire correspondait à 4,25 % de la consommation d’énergie totale en 2021 : s’il fait courir à l’humanité un danger extrême, le nucléaire est en réalité une énergie marginale sur terre, en déclin, et donc tout à fait incapable de « sauver le climat ».

Critique détaillée de la BD :

Page 131 : Contrairement, par exemple, aux centrales solaires, la concentration de l’énergie nucléaire économise de l’espace et consomme moins de métal, de ciment, etc. Avec de la sobriété, et beaucoup d’installations petites à moyennes, sur les toits de parking, d’usines, les canaux, voire les façades et les vitrages. Et stocker de l’électricité ou produire des carburants de synthèse par exemple et de l’hydrogène vert. Est-ce que ça prend beaucoup de place ? Eh oui ! C’est une logique décentralisée, mais l’argument de JMJ est du pur enfumage, voir le texte de Stéphane His ! « Centralisme énergétique », ou décentralisation citoyenne ? Nous voyons ici que JMJ vit dans l’Ancien Monde, celui de la « centralisation ». C’est une vision philosophique héritée du « centralisme bureaucratique » qui a également été à la base de la gestion de l’URSS. L’énergie part de centrales et est distribuée par un ensemble de « réseaux en étoile ». Il est clair que les énergies renouvelables sont inadaptées à ce réseau de distribution, non par nature, mais par le conservatisme des tenants de « l’ère centralisée », qui y ont un intérêt, comme les sponsors de JMJ. Ce centralisme, surtout en matière nucléaire, est lié à un mode politique de gestion autoritaire où les décisions sont imposées du sommet de l’État vers la base, souvent sans réelle consultation des citoyens. La solution est dès maintenant de développer des réseaux locaux et des communautés d’énergie, où la consommation est proche de la production, donc aussi avec moins de pertes. Le surplus doit bien sûr être partagé à moyenne et longue distance par les réseaux existants, pour profiter de l’effet de « foisonnement » 5 de toutes les énergies disponibles, car par exemple à un moment donné le vent peut souffler en Allemagne plus que chez nous. Ceci me rappelle les débuts de l’informatique, tout était misé sur des « mainframes », ordinateurs géants centralisés accessibles à distance par des terminaux quasi stupides, toute la logique et l’information étaient centralisées. Petit à petit, les réseaux locaux sont apparus, puis se sont reliés entre eux, et une bonne part des « mainfraimes » ont disparu. Les gros ordinateurs ont toujours leur utilité, mais il y a aussi presque partout des réseaux locaux qui permettent de rapprocher la production, le stockage et l’utilisation de l’information, tout en maintenant un lien à grande distance. Il me semble que la production, la distribution et l’utilisation de l’énergie devraient suivre le même chemin, et la BD de JMJ ne me semble pas préconiser cette philosophie ! Face au problème de l’intermittence, il y a donc des solutions ! Il ne faut pas, comme JMJ, comparer ces moyens deux à deux (« En Belgique, si on n’utilisait que l’éolien et le solaire pour produire de l’électricité, il faudrait X tonnes de batteries », ou « il faudrait une éolienne tous les kilomètres carrés »), ce qui donne bien évidemment des résultats absurdes. Non, il faut construire de « modèles », c’est-à-dire des représentations du monde rigoureuses mettant en présence l’ENSEMBLE de ces modes, en faisant varier les hypothèses, et en tenant compte du progrès technique et de l’évolution des coûts. On nous dit que le nucléaire est en compétition avec le charbon, alors qu’en réalité il est en compétition avec une production électrique basée sur un « mix » 100 % renouvelable. C’est pour cela que les pronucléaires tentent de saper les énergies renouvelables ! Oui, il faut un mix « pilotable » de sources d’énergie, de partage et de stockage, et donc en finir à terme avec l’utilisation du gaz fossile comme seule vraie énergie pilotable pour répondre aux pics de consommation. Le nucléaire est une énergie de base, mais pas vraiment pilotable (flexible), on ne peut l’arrêter et le remettre en marche rapidement (ou le ralentir très fort et puis ré-augmenter la puissance).
C’est très mauvais de faire subir des chocs thermiques trop fréquents à un réacteur, cela accélère son vieillissement. C’est peut-être une des raisons pour lesquelles les réacteurs Français vieillissent plus vite que leurs équivalents PWR US, construits sur base des mêmes brevets Westinghouse car ils sont moins souvent soumis à ces chocs, en dehors des arrêts pour maintenance.

Page 130 : À 3 % d’uranium 235 dans les réacteurs nucléaires français, ça ne risque pas d’exploser. D’accord, ce n’est pas une bombe nucléaire. N’empêche que Fukushima et Tchernobyl ont bien explosé pour d’autres raisons que la réaction en chaîne, et même sans explosion la fusion du cœur peut endommager les confinements et conduire à la dispersion dans l’environnement de gaz et de matières radioactives, comme à Three Miles Island en 1979. Des gaz radioactifs se sont aussi échappés de l’EPR de Taishan en Chine en 2021, certes en faibles quantités. Mais Tchernobyl a dispersé au moins cent fois plus de matières radioactives que la bombe d’Hiroshima…

Page 132 : Le nucléaire émet très peu de CO2 par kilowattheure produit (6 g de CO2/Kwh). C’est la version française, le GIEC propose 12 g. Nous ne savons pas comment le GIEC a obtenu ce chiffre. Nous pensons qu’il est sous-évalué et qu’en pratique le nucléaire ne produit pas moins que les renouvelables, mais bien sûr beaucoup moins que le gaz. Il faudrait vraiment tenir compte du cycle complet, donc, y compris la gestion des déchets dans le futur, la réhabilitation des zones minières qui attentent à la santé des populations, en Afrique, mais aussi en France… Le nucléaire ne sauvera pas le climat, mais le dérèglement climatique nuit fortement à l’industrie électronucléaire. Une baisse drastique du niveau d’une rivière lors d’une « super sécheresse » qui empêcheraient de refroidir les réacteurs, obligeant à les arrêter. Tout comme les inondations, les tempêtes, et une hausse du niveau de la mer, rendant par exemple Gravelines inutilisable, voire pire…

Page 135 : En dessous de 200 mSv par an (de contamination), il n’y a pas d’effet observable sur la santé, même à très long terme. Faux. Une faible dose c’est simplement une faible probabilité de dégâts, plus le temps passe, plus le risque augmentera, et les effets organiques peuvent se manifester plus tard et donc pour un individu donné il sera souvent difficile d’établir juridiquement la cause de la maladie. Autour de Tchernobyl et de Fukushima, les autorités compétentes n’ont pas fait d’évaluation statistique transparente… Bien sûr, il faut une forte dose pour que des effets soient visibles immédiatement et donc reliés indiscutablement à la contamination, d’où les « 50 morts » annoncés à Tchernobyl au début et le « zéro mort » à Fukushima.

Deux raisons empêchent que Tchernobyl arrive en France : – Il n’y a pas de graphite dans le cœur de nos réacteurs. – Nos centrales disposent d’un « recombineur d’hydrogène » Manipulation : la catastrophe nucléaire française ressemblera bien plus à celle de Fukushima qu’à celle de Tchernobyl ! Et le « recombineur d’hydrogène » ne peut gérer que de petites quantités de ce gaz, pas sûr qu’en cas d’accident cela soit suffisant !

Les réacteurs français sont à « sécurité passive » car ils sont à eau pressurisée. Si l’eau fuit, la réaction s’arrête. C’est ce qui manquait à Tchernobyl. Si l’eau fuit, le refroidissement s’arrête aussi, comme à Fukushima, et si la fuite n’est pas maîtrisée, il y a un gros risque de catastrophe : incendie, bulle d’hydrogène, fonte du cœur, explosion…

Près d’une centrale nucléaire, la radioactivité augmente de 0,02 mSv. Beaucoup plus en cas d’incident, d’accident et, pire, en cas de catastrophes comme celles de Tchernobyl et Fukushima. Ces dernières ont entraîné le déplacement massif de centaines de milliers d’habitants dont beaucoup seraient effectivement décédés en restant sur place. La radioprotection n’est pas simple. Il ne suffit pas d’additionner des becquerels6, cela dépend du radioélément et son énergie, sa demi-vie, la contamination interne ou externe, de sa durée de persistance dans le corps (demi-vie biologique). Le tritium est peu offensif en irradiation externe, est de faible énergie, mais dangereux en contamination interne, car une fois lié à l’eau ou à des composés organiques il peut « tirer à bout portant » partout à l’intérieur des cellules… Le radon est « naturel », mais est le troisième responsable des cancers du poumon après le tabac et l’amiante… Le césium 137 affaiblit toujours les enfants d’aujourd’hui à Tchernobyl et provoque des problèmes cardiaques, car il s’accumule dans les muscles. On ne peut pas comparer le K40 (potassium radioactif) présent dans le corps humain (oui plusieurs milliers de désintégrations par seconde), et l’effet de certains produits de fission de l’uranium. Le plutonium (dont les rayons alpha sont arrêtés par une feuille de papier) est létal à 1 mg, et cancérogène à 1 µg en contamination interne ; il reste quasiment à vie dans certains organes, etc. Pour les détails, voir ce texte sur la radioactivité, en particulier la page 14 pour le potassium, et ce document sur le tritium.
Et donc, même s’il semble qualifié dans d’autres domaines, il apparaît que JMJ ignore les bases de la radioprotection !? À choisir, je fais confiance à la CRIIRAD et aussi à Yves Lenoir, qui a plus 40 ans d’expérience dans ce domaine, et a rencontré en Ukraine et Biélorussie les médecins sérieux qui étudient les effets de la catastrophe sur la santé humaine (Institut Belrad, « Les Enfants de Tchernobyl », etc).

Page 137 : Les réacteurs d’EDF n’ont pas de vocation militaire.
Rien n’empêche de récupérer le plutonium produit par un réacteur civil pour en faire des bombes. C’est même à ça que servaient les premiers réacteurs électronucléaires français.

Page 138 : L’UNSCEAR est au-dessus de tout soupçon. Il est clair que le but de ces organismes soi-disant indépendants était et reste le maintien et la promotion de l’énergie nucléaire, ils sont juges et parties, et ne se sont pas opposés aux autorités locales, par exemple en Biélorussie…. Ils protègent leurs intérêts. Il y a d’autres sources d’information sur les dégâts humains et matériels à Tchernobyl, notamment les experts et médecins indépendants, qui ont souvent été poursuivis par les autorités officielles de leur pays. Je ne ferais pas confiance à l’administration d’Alexandre Loukachenko !

Page 139 : Tchernobyl n’a entraîné qu’une trentaine de morts à bref délai. 6000 enfants ont eu un cancer de la thyroïde, mais ça se soigne bien. « Si l’on enlève les évaluations les plus hautes et basses, on se retrouve avec une fourchette de 4 000 à 200 000 morts. L’ONU en 2006 retenait une fourchette de 4 000 à 93 000. » C’est déjà beaucoup trop, et à notre avis en dessous de la réalité, il y a eu une censure des autorités locales, approuvées par l’UNSCEAR et l’AIEA…

Page 140 : Le stress dû à Tchernobyl a fait plus de dégâts que Tchernobyl lui-même. Faux ! Oui, il y a eu du stress, mais surtout de vrais dégâts matériels et humains. Lire « La Supplication » de Svetlana Alexievitch , qui raconte ce qui est arrivé aux victimes de la catastrophe de Tchernobyl !

Page 140 : La zone d’exclusion de Tchernobyl est devenue une réserve naturelle. Le gain pour la biodiversité est sans appel. JMJ : « En France — car c’est loin d’être pareil partout — Fukushima aura surtout été un problème médiatique majeur, avant d’être un désastre sanitaire ou environnemental majeur. Cet embrasement médiatique n’est pas du tout en rapport avec l’importance de cette nuisance dans l’ensemble des problèmes connus dans ce vaste monde. Du point de vue des écosystèmes, et ce n’est pas du tout de l’ironie, un accident de centrale est une excellente nouvelle, car cela crée instantanément une réserve naturelle parfaite ! La vie sauvage ne s’est jamais aussi bien portée dans les environs de Tchernobyl que depuis que les hommes ont été évacués (la colonisation soviétique, à l’inverse, a été une vraie catastrophe pour la flore et la faune). Le niveau de radioactivité est désormais sans effet sur les écosystèmes environnants, et le fait d’avoir évacué le prédateur en chef sur cette terre (nous) a permis le retour des castors, loups, faucons, etc. » Source : La Tribune, 20 Févr. 2012. Détails complémentaires sur l’ignorance de JMJ sur les effets des faibles doses sur la biodiversité dans ce rapport, en particulier à la page 18 ! Il existe plus d’une centaine d’articles scientifiques de haut niveau sur les effets des fortes et faibles doses de radioactivité sur la faune et de la flore à Fukushima et Tchernobyl.

Page 141 : Le nuage radioactif de Tchernobyl s’est rapidement dilué en s’éloignant de l’accident. Dilué, oui, un peu, mais la pollution est partie très loin de l’Ukraine, y compris chez nous, et les retombées, à certains endroits, étaient très mauvaises pour la santé humaine ! Et certains organismes, notamment les champignons, peuvent accumuler certains radionucléides, comme le césium 137, et dépasser les normes en France 30 ans après Tchernobyl !

Page 141 : Selon le rapport de l’UNSCEAR, la catastrophe de Fukushima n’a entraîné aucune conséquence sanitaire (pas de cancers, pas de malformations à la naissance). Toujours ce même organisme constitué de « gens du nucléaire ». Des informations plus nuancées dans cet article de Reporterre .

Page 144 : En réduisant le nucléaire, les Allemands reviennent au charbon. En aggravant le réchauffement climatique, ils vont provoquer plus de morts qu’un accident nucléaire.
La consommation de charbon a de fait augmenté légèrement entre 2011 et 2013, mais la part du charbon (houille et lignite) dans la production allemande d’électricité est passée de 44 % en 2013 à 24 % en 2020. puis diminué depuis, au fur et à mesure de la sortie du nucléaire ! L’Allemagne est en train de progresser vers le zéro carbone !!! La part du renouvelable est passée de 16 % à 40 % entre 2010 et 2021, et déjà 52 % en incluant les autres sources bas-carbone. La part du nucléaire est passée à moins de 7 % et s’arrête complètement en avril 2023. Les énergies fossiles sont, elles, passées de 60 % à 47 %. Malgré la décision récente de maintenir certaines centrales au charbon et de l’augmenter ces derniers mois, l’Allemagne continue à vouloir sortir du charbon en 2030 et a arrêté ses 3 derniers réacteurs nucléaires en avril 2023. Voir tous les mix énergétiques d’électricité sur le site d’Ember !

Page 145 : Le nucléaire rend moins dépendant de l’étranger que les énergies fossiles. Faux. Loin du mythe de la France nucléaire triomphante, imposé dans l’opinion publique depuis des décennies, le nucléaire français et Belge est très dépendant de l’étranger. D’abord, 100% du combustible nucléaire, l’uranium, est importé. Par ailleurs, malgré la guerre en Ukraine, la France a besoin de la Russie pour l’enrichissement du combustible à partir de combustibles usés selon une technique que seuls les Russes maîtrisent. Par ailleurs, du fait des graves défauts détectés sur les réacteurs français (corrosion sous contrainte), EDF a été obligée de recruter à grands frais des soudeurs américains pour mener à bien des réparations que le nucléaire français est incapable de faire lui-même…

Page 146 : Le nucléaire produit peu de déchets radioactifs de haute activité et à vie longue. Ils tiennent tous dans une piscine olympique. On ne peut pas les entasser, il faut des emballages volumineux et séparés. Si c’était si simple, pourquoi , dans le site d’enfouissement de Bure, prévoir l’excavation de 11 millions de m³, de 270 Km de galeries, dont 25 Km pour les déchets de haute activité, et une surface occupée en sous-sol de 15 km² ?

Page 147/148 : L’enfouissement des déchets est sûr. À 400 m de fond, ils sont sous les nappes phréatiques (qui sont à 20 m de profondeur). Oui, mais à Bure de l’eau est pompée du dessous vers la surface et ces eaux, notamment des nappes phréatiques, peuvent redescendre dans la zone de stockage à 400/500 m. La structure des installations, des puits, des descenderies favorise ces fuites d’eau. Certaines argiles proches de la zone des déchets sont perméables à l’eau et pourraient transporter des fuites radioactives vers le bassin Parisien. Tous les détails sur Bure.

Page 148 : Il reste assez d’uranium (sur Terre) pour faire fonctionner le parc actuel de réacteurs quelques centaines d’années. Ce serait plutôt une centaine d’années au maximum. Et donc si on en construisait par exemple quatre fois plus, c’est fini dans 25 ans…

Page 149 : Le surgénérateur est une technique maîtrisée (…) Il multiplie par 100 l’énergie extractible de l’uranium. On a donc assez d’uranium pour des milliers d’années. Quarante ans plus tard, on les attend toujours… Aucun surgénérateur n’est en fonctionnement pour le moment, beaucoup ont été abandonnés pour des raisons de coût ou de sécurité.

Page 149 : Les gens craignent plus les déchets nucléaires qui n’ont jamais tué que, par exemple, les accidents de voiture. Les accidents tuent maintenant, oui. Mais les déchets nucléaires menacent la biosphère et les générations futures pour des milliers d’années…

Page 150 : Le charbon tue chaque année dans le monde l’équivalent de la ville de Grenoble. Remplaçons le plus vite possible le charbon par un mix renouvelable ! Notons que la Belgique ne produit plus d’électricité à base de charbon.

Page 151 : Les écologistes persistent à critiquer le nucléaire car il leur est difficile d’admettre qu’ils se sont trompés. Notons que la part du nucléaire dans la production mondiale d’électricité est passée de 17 % en 2000 à 9 % en 2022. Et la part du nucléaire était égale à 4,25 % de l’énergie totale consommée sur la planète en 2021. Ceux qui y voient une énergie d’avenir sont en train de nous tromper d’autant plus que des quantités de réacteurs arrivés en fin de vie vont fermer dans les 20 ans qui viennent.

Page 160 : Le nucléaire a moins d’inconvénients que les énergies renouvelables. Oui, la production nucléaire convient au pouvoir politique et industriel qui peut contrôler cette énergie très centralisée et maintenir les citoyens dans l’ignorance de ce qui se passe. Le nucléaire civil est peu compatible avec la démocratie et a été au début imposé comme un complément indispensable au nucléaire militaire. Les énergies renouvelables peuvent être réparties un peu partout sur le territoire, décentralisées, déployées par les collectivités territoriales en concertation avec les habitants…

Page 161 : Le nucléaire est le parachute indispensable pour freiner la chute que nous imposera la décroissance obligée. Le nucléaire est, en lui-même, un exemple de décroissance : comme déjà expliqué ci-dessus, la part du nucléaire dans la production mondiale d’électricité s’est effondrée de 17 % en 2000 à 9 % en 2022, et est descend à 4 % de l’énergie primaire, la chute continue…

1. Rappelons qu’au moins une de ses initiatives, « The Shift Project », a été financée par EDF, Bouygues, Vinci, tous acteurs ayant des intérêts dans le secteur nucléaire…

2. Il faudrait aussi clarifier et faire connaître la vraie production de CO2 du nucléaire, qui est à notre avis sous-estimée. Le chiffre utilisé par les pronucléaires de 6 g CO2/Kwh est inférieur à celui du GIEC 12 g CO2/Kwh, qui est lui-même contestable, d’autres chercheurs parlent de 66 g CO2/Kwh voire plus… Bien sûr, les émissions de CO2 doivent être comptées par cycle entier, mais alors il faudrait compter aussi les dégâts miniers, la pollution qui y est liée, ses effets sur la santé dans les zone d’extraction en France, en Afrique et ailleurs, le coût de cette dépollution nécessaire, et le coût (présent et futur !) de la gestion des déchets !

3. Tihange, à 16 km de l’aéroport de Liège-Bierset, se trouve sur une ligne aérienne assez fréquentée. Des gros porteurs (Boeing 747) passent fréquemment très près de la centrale et à moyenne altitude (2500 pieds, soit 840 mètres !). Suivant la législation, ils ne peuvent pas passer juste au-dessus, mais, en pratique, jugez par vous-même en regardant cette vidéo.

4. La capacité du stockage installé en Belgique va augmenter d’ici 2024.

5. Effet de foisonnement : « La réduction des fluctuations temporelles de l’intermittence et de la variabilité de la production d’énergie par la multiplication de sources éloignées »

6. Nombre de désintégrations par seconde d’un radioélément spécifique : par exemple un becquerel de césium 137, c’est une désintégration par seconde de cet élément. Additionner les becquerels d’éléments différents, au niveau de l’évaluation des risques, ce n’est pas très pertinent, et c’est encore moins clair si on ne précise pas si la contamination est externe ou interne.

Views: 4743

Éléments de réponses à la consultation sur la prolongation de Tihange 3 (T3) et Doel 4 (D4)

Une consultation est actuellement en cours jusqu’au 20 juin 2023, et elle n’est pas limitée aux citoyens Belges. Le site propose deux documents, un résumé de 23 pages et une évaluation plus complète de 409 pages.

Le résumé simplifie trop la situation et omet de nombreux points, dont le rejet de nombreux produits radioactifs, (surtout le tritium et l’iode 131) lors du fonctionnement normal. Visiblement, les auteurs misent sur le fait que presque tout le monde se limitera au résumé tronqué, mais non, « on ne vous cache rien, allez lire les 409 pages techniques qui montre qu’aucune norme n’a été ou ne sera dépassée »….

Fin du Nucléaire suggère cependant de lire le résumé, et ensuite de répondre aux assertions de ce résumé concernant les incidences sur l’environnement, en vous inspirant de quelques un des arguments suivants, et de donner votre avis sur cette prolongation.
La page accepte une réponse assez longue, mais il est conseillé de se limiter à quelques arguments.

  • Le dossier résumé nous dit que les licences d’exploitation de KC Doel (D4) et CN Tihange (T3) seraient respectées, car la dose de radiation reçue par la population durant le fonctionnement normal serait principalement déterminée par les rejets gazeux de carbone 14 (C-14). C’est incomplet, car le dossier complet d’évaluation parle du rejet (parmi d’autres radionucléides) de tritium et d’iode radioactifs dans l’air et de tritium dans l’eau de la Meuse à Tihange. Le graphique de la page 380 montre qu’il s’agit de rejets totaux de l’ordre de 50 TBq de tritium dans l’air et dans l’eau à Tihange. Certes, c’est en dessous des normes, mais une telle quantité n’est pas négligeable, et les effets du tritium sur la santé humaine sont sous-estimés, voire niés, par l’industrie nucléaire. Ce produit est extrêmement difficile à filtrer à l’échelle industrielle, et si les normes étaient à un niveau plus en rapport avec la santé humaine, cela poserait des problèmes insolubles à l’industrie électronucléaire, ce qui à mon avis motive leur déni à ce sujet ! Oui, le C-14 et le tritium peuvent aussi être d’origine naturelle, mais un réacteur arrêté, c’est un plus pour la santé de la population ! Car les estimations en milliSievert/an ne parlent que des effets de la contamination externe. Si les éléments son ingérés ou inhalé, l’effet est différent suivant l’élément, qui reste plus ou moins longtemps dans l’organisme et y cause des dégâts spécifiques bien plus importants que la contamination externe !

  • Extrait du dossier résumé : « La contamination par des radionucléides de longue durée de vie tels que le Cs-137 est très limitée. L’impact transfrontière de tous les accidents considérés pour Tihange 3 est très limité en raison de la distance avec les pays voisins ! »!?
    Un accident grave avec rupture des barrières de confinement pourrait très bien répandre de l’uranium 235 ou 238, du plutonium 239, du cesium137, de l’iode 131 et d’autre produits de fission bien au delà des frontières belges, suivant la direction des vents ! Il suffit de voir comment les vents ont soufflé à Fukuhsima en 2011 et à Tchernobyl en 1986… Doel est moins de 4km de la Hollande (et 15 km de la ville d’Anvers), Tihange est à 65 km de la ville d’Aachen en Allemagne, 25 km de la ville de Liège, moins de 60 km de la frontière Française…. Les pilules d’iode, prises à temps en cas d’accident, idéalement trois heures avant le passage du nuage mais pas plus de 3 ou 4 heures après, ne protègent que du cancer de la thyroïde, pas de la leucémie par exemple…
    La présentation de cette consultation semble limiter les risques à la Belgique, et marginalement à la Hollande : nous exigeons une consultation internationale impliquant au moins les pays limitrophes.

  • Citation du dossier résumé à propos du dérèglement climatique : « Dans la perspective temporelle de la prolongation de la durée de vie, les deux sites ne sont pas vulnérables non plus aux conséquences du changement climatique, et cette situation est indépendante de la prolongation ou non de la durée de vie de Doel 4 et de Tihange 3….. Les modifications et rénovations futures doivent être suffisamment résistantes aux inondations et au climat pour absorber les conséquences de précipitations plus intenses à l’avenir et ne pas transférer les inondations à la zone environnante ». C’est complètement erroné, le dérèglement climatique est déjà là : en 2020, la limite de débordement du mur de protection a été évitée d’extrême justesse, le débit de la Meuse est passé de 200 à 1500 m³/s à Tihange, à quelques dizaines de m³ près, la centrale était mise à l’arrêt, voire inondée !
    Le nucléaire est très sensible aux dérèglements climatiques : la sécheresse qui implique une surchauffe inacceptable des rivières ou une rupture approvisionnement électrique,par manque d’eau de refroidissement, les inondations qui impliquent également un arrêt de la production, voire une catastrophe en cas de panne du système de refroidissement (arrêt de diesels de secours comme à Fukushima). De fait il va falloir investir encore plus dans la protection vis à vis des inondations et du contrôle des eaux sortant du site, dans toutes les circonstances. Que va rapporter cet investissement ?

  • Risque d’accident majeur ? Nous lisons dans le dossier résumé qu’ « on peut affirmer que la perception du risque existe, mais qu’il n’y a pas de lien démontrable avec les effets psychosomatiques » .
    Le problème n’est pas psychosomatique, il ne s’agit pas d’un « problème de perception » : le risque existe réellement, tout comme dans les 6 ou 7 accidents graves du passé : Tchernobyl 1986, Fukushima 2011, mais aussi Mayak/Kyshtym 1957 et 2017, Windscale 1957, Three Miles Island 1979, St Laurent de eaux 1969 et 1980, Tokaï Mura en 1997… et la liste n’est pas exhaustive, certains incidents en URSS et aux USA ont été censurés, comme la fois ou des blocs de plutonium ont été rassemblés par erreur à Los Alamos en aout 2011 et on failli déclencher une réaction nucléaire aux conséquences imprévisibles… Plus nos réacteurs vieillissent et plus le risque d’accident sera élevé. Rappelons-nous les fissures dans T2/D3, et les problèmes actuels en France de corrosion sur des tuyaux destinés au refroidissement… Le territoire belge étant petit et très peuplé, quasi tout le territoire et les régions avoisinantes seront pollués par les éléments radioactifs, le dossier attaché est vraiment trop optimiste voire trompeur, l’effet des grandes catastrophes du passé ne se sont pas limitées à moins de 60 ou 80 km…

  • Impact de la prolongation sur la production de déchets et de combustibles usés : augmentation de 9 % des déchets en cas de prolongation qui seront stockable sur le site SF2 à Tihange «en attendant de savoir quoi en faire »… Mais le problème est là : à ce jour, personne ne sait ce qu’on va en faire, après leur passage dans le SF2 à Tihange !
    – Combien de temps les combustibles usés vont-il rester dans les piscines ?
    – Combien de temps les combustibles usés vont-il rester ensuite dans le SP2 ?
    – Que va-ton en faire après et combien de temps cela va-t-il durer ?
    – Combien cela va-t-il coûter ?
    A combien de milliards d’Euros Engie veut-il placer le plafond à partir duquel les futurs contribuables belges paieront les frais de gestion des déchets et de démantèlement ?

  • Qui va payer les frais de démantèlement des deux réacteurs prolongés ?
    Pourquoi l’État Belge devrait-il participer à ces frais ? Et « le démantèlement d’un seul ou plusieurs des autres réacteurs pourrait influencer la situation radiologique, mais ne relève pas de l’objet de la présente évaluation de l’impact environnemental ». On ne sait donc rien sur l’effet du démantèlement sur la situation radiologique, l’ignorance apparente des responsables nous rend méfiants avant d’avoir plus d’information !

  • Le site de Tihange se trouve sur une ligne aérienne fréquentée menant à Bierset, à moins de 5 minutes de vol. De gros porteurs, comme les Boeing 747 passent à basse altitude (2500 pieds) très près de la centrale et du futur site de stockage SF2, comme le montre une vidéo sur YouTube. Tihange 3 n’a pas la résistance nécessaire pour résister au crash d’un avion moderne avec en plus son réservoir de combustible bien rempli après un décollage de Bierset. T3 et D4 n’ont été validés il y a longtemps que pour de petits aéronefs !

  • La durée de prolongation après 2026/2027 est fixée à 10 ans. Et si en 2028 ou plus tard on se rendait compte que T3/D4 ne sont plus utiles, pourquoi ne pas les fermer et les démanteler avant 2037 ? Cette possibilité devrait figurer dans les contrats avec Engie !

  • Malgré les mises à jour envisagées, nos réacteurs vieillissent inexorablement, leur conception est très proche de celle des réacteurs français, victimes de problèmes techniques fréquents, notamment de corrosion. Nous devons nous préparer à avoir de temps en temps un réacteur en panne.

  • Indépendance énergétique ? Le combustible nucléaire vient entièrement de l’étranger et une partie importante provient de Russie. L’uranium est une ressource minière épuisable, il en reste pour moins d’un siècle avec le parc mondial actuel. Le commerce d’uranium avec Rosatom (et des sociétés russes qui jouent les intermédiaires avec le Kazakhstan) continue même pendant la guerre en Ukraine, les sanctions ne s’appliquent pas, mais cette source pourrait s’arrêter brutalement aussi. Et par ailleurs bloquer l’approvisionnement de certaines centrales d’Europe de l’Est dépendant de la technologie russe, provoquant un problème au niveau européen…
    D’où va venir l’uranium des réacteurs prolongés ? La décision doit être prise avant la fin avril 2023.

  • Le coût de la prolongation par rapport à l’investissement dans le renouvelable et les économies d’énergie (isolation, etc.). Le problème est que l’argent investi pour le nucléaire est perdu pour le renouvelable et les solutions annexes : économies d’énergie, systèmes de stockage, entre autres dans l’hydrogène vert, etc., ou de partage en réseau local ou à grande distance. Il est clair qu’un euro investi dans le nucléaire ou sa prolongation économise moins de CO2 par rapport à un euro investi dans le renouvelable ou les économies d’énergie !

  • Le secteur nucléaire est-il assuré correctement ? “Les montants de responsabilité des exploitants s’élèvent à 700 millions d’euros par installation et par accident (70 millions d’euros pour les installations à « risques réduits ») et à 80 millions d’euros pour les accidents survenant lors d’un transport de substances radioactives. S’y ajoutent deux contributions supplémentaires, dont les montants ont été également augmentés : celle de l’État de l’installation, soit 500 millions d’euros, et celle des États, parties prenantes à la convention de Bruxelles, soit 300 millions d’euros.”. C’est absolument insuffisant en cas d’accident nucléaire sérieux, qui coûtera des centaines de milliards d’euros, et qui pourrait ruiner une grande partie de notre pays !

  • Bilan CO2. La production de CO2 ne se fait pas à Tihange ou à Doel, mais sur l’intégralité du cycle, de l’extraction du minerai jusqu’à la fin de la gestion des déchets. Les données propagées par le GIEC ou pire par EDF, reprises par les partisans du nucléaire, sont trop optimistes. Nous pensons que le nucléaire ne produit pas moins de CO2 que les renouvelables (mais bien sûr moins que le méthane), si l’on compte vraiment tout le cycle, qui est très long si on compte la gestion des déchets… Il n’est pas possible de prolonger les deux réacteurs sans dépenser des milliards pour la mise à niveau, les améliorations de sécurité et les protections contre le dérèglement climatique. Mais un euro investi dans cette prolongation et ses conséquences (création de déchets supplémentaires) économise certainement moins de CO2 qu’un euro investi dans le renouvelable ou les économies d’énergie !

  • Que propose le gouvernement ? Si on fait confiance à Élia (le régulateur du réseau), vu que pendant au moins 2 ou 3 ans à compter de 2025, malgré les mesures prises par la ministre (CRM, etc.), la situation actuelle nous conduit vers une rupture d’approvisionnement en électricité, nous ne pouvons pas éviter la prolongation de deux réacteurs, soit T3 & D4.
    Cependant, l’expert allemand Robert Borsch-Laaks d’Aachen nous fait remarquer que le pays a résisté à une rupture d’approvisionnement, quant à l’automne 2018, lorsque presque tous les réacteurs étaient indisponibles. Durant cette période, un seul réacteur, Doel 3, a fonctionné du 12 octobre au 13 novembre. Immédiatement après (jusqu’à la mi-décembre), Tihange 1 a de nouveau été ajouté. Cela a créé une situation qui pourrait également se produire en 2026 si seuls T3 ou D4 étaient encore en service. Au cours de cette période, ce sont principalement les centrales au gaz qui ont comblé les déficits de production causés par le manque de nucléaire en utilisant jusqu’à 75 % de la capacité installée disponible à l’époque (6,6 GW). En fonction de la capacité de contrôle des centrales à gaz et des fluctuations de l’offre d’énergies renouvelables, entre 2 et 3,5 GW ont été importés du marché intérieur de l’UE. Depuis cette date, l’offre du renouvelable a fortement augmenté et elle augmentera encore plus d’ici 2026/2027, ce qui limitera le plus possible, et peut-être totalement, la part du gaz dans le remplacement du nucléaire.

  • Le choix du gouvernement est donc de prolonger deux réacteurs pour une durée de dix ans, ce qui ne sera peut-être pas utile jusqu’en 2037, avec un investissement assez lourd et donc peu rentable financièrement ainsi qu’en CO2 économisé par Euro investi. Le projet du gouvernement induit un gaspillage de ressources et d’argent dans des réacteurs nucléaires vieillissants, de moins en moins filables, créateurs de déchets et de pollution de l’environnement, qui augmentent le risque d’un accident qui ruinerait le pays. De même l’investissement dans de nouveaux outils nucléaires (SMR ?), trop chers, trop polluants, et qui ne seront pas au point à temps, car il nous faut amorcer la transition énergétique et économe en CO2 dans les 10 ans. Le nouveau nucléaire est une voie sans issue et un gaspillage de ressources !

  • Il aurait fallu — et il est peut-être encore temps de — pousser plus à fond les solutions renouvelables, de stockage (dont l’hydrogène, vert) et les carburants verts synthétiques), de partage et de distribution de l’électricité au niveau local et à grande distance, et d’investissement dans les économies d’énergie, et dans l’isolation des bâtiments. Cette solution nécessite également des centrales à gaz, pour les pointes de consommation, car c’est pour le moment le seul outil disponible, et pour avoir une puissance en réserve. Si nous refusons la prolongation, le compromis serait situé entre une consommation un peu plus élevée de gaz (idéalement, vert, à terme), ce qui produira un bilan CO2 qui ne sera temporairement pas idéal, bien que contrebalancé par une grande proportion de renouvelables et de mesures d’économie. Le but est que dans les dix ans on avance vers une solution économe en énergies fossiles et en CO2.





Views: 167